

CATALYTIC OXIDATION TECHNOLOGY TRANSFER PROGRAM

Dr. Alex Balboa

Mr. Michael Parham

Research and Technology Directorate

Edgewood Chemical Biological Center

US Army, Research Development and Engineering Command

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Info	regarding this burden estimate rmation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington		
1. REPORT DATE 16 NOV 2004		2. REPORT TYPE N/A		3. DATES COVE	ERED		
4. TITLE AND SUBTITLE					5a. CONTRACT NUMBER		
Catalytic Oxidation		5b. GRANT NUMBER					
					5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)					5d. PROJECT NUMBER		
					5e. TASK NUMBER		
					5f. WORK UNIT NUMBER		
Research and Tech	ZATION NAME(S) AND AE nnology Directorate Research Developmo	Edgewood Chemica	0	8. PERFORMING REPORT NUMB	G ORGANIZATION ER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)					10. SPONSOR/MONITOR'S ACRONYM(S)		
		11. SPONSOR/MONITOR'S REPORT NUMBER(S)					
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited					
	OTES 49, 2004 Scientific Cland on 15-17 Nove		0				
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF				
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	- ABSTRACT UU	OF PAGES 42	RESPONSIBLE PERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188

Overall Objective

- Design, construct and evaluate a catalytic air purification system for collective protection applications
 - Demonstrate Broader Protection of Catalytic versus Single Pass
 Filtration Technology
 - Optimize Power, Weight and Size of Catalytic Process

Approach

-Incorporate commercial/newly developed catalysts for chemical, biological and TICs destruction (leverage w/ Advanced Adsorbents Program)

-Establish design relationships for predicting system size and energy requirements for potential applications

Program Leverage

DARPA Investment TECHNOLOGY READINESS LEVELS

 identification and evaluation of acid gas abatement strategies

ECBC/INDUSTRY COLLABORATION

LAB-SCALE TESTING (COMPONENT)

evaluation of commercial catalysts

SYSTEM-SCALE TESTING

- evaluation and optimization of catalyst system components
 - integration of system components
- determine size and energy requirements of scalable AP system

DARPA Investment

Objectives

- Technology maturity level/Technology readiness level
- Applicability/relevance to DoD CB Defense Acquisition Program
- Potential to mature for evaluation in field environment
- Availability of other funding to leverage Technology Transition investment
- Availability to government of data bases, methodology details, and design concepts

CATOX

Chemical delivery sensitivities

- Single pass filters have their capacity defined in terms of CT (conc x time).
- This is a misleading indicator for CATOX.
- CATOX challenges must be as close to the application's threat to account for performance sensitivities to:
 - # of attacks
 - Dosage per attack
 - Peak concentration
 - Frequency of attacks
- CATOX systems can succeed or fail for a given CT if any of these variables are changed.

Benefits

Current filter technology

- limited capacity for agents that are removed by chemical reaction and/or weakly adsorbed
- minimal protection versus several of the toxic industrial chemicals (TICs)
- prolonged environmental exposure has been shown to reduce the capacity of these filters for agents that are removed by chemical reaction

Catalytic oxidation

An alternative air purification technology

- (1) broad and universal protection against the chem-bio threat,
- (2) reduced logistics due to long operational life,
- (3) greatly increased capacity for CB agents and TICs compared to current NBC collective protection technologies and
- (4) lower energy costs relative to other regenerative filtration technologies.
- (5) Catalytic oxidation is a destructive technology, converting CB agents and TICs to CO₂ (catalysts exist that are capable of decomposing nitrogen-containing compounds with minimum NOx formation), H₂O and haloacids (should halogens be associated with the parent compound).

Challenges

- Issues
 - Toxic By-products
 - Catalyst Stability
 - Energy
 - Post treatment
- State of the Art
 - High activity
 - Stable catalysts
 - NO_x, acid retention
 - Improved acid abatement technologies
- Mitigation of reaction product emissions
- Maximize heat recovery to minimize energy utilization

Material Development

-Incorporate commercial/newly developed catalysts for chemical, biological and TICs destruction

Monolithic Bed Catalyst Suppliers Guild Associates, Inc.

Manufacturer	Catalyst Designation	Cell Density	
Engelhard Corporation	Engelhard Catalyst	200 Cells/in ²	
United Emissions Catalyst	NB001-73-01	200 Cells/in ²	
United Emissions Catalyst	NB001-73-02	200 Cells/in ²	
Sud Chemie Prototech	LS02-03145	400 Cells/in ²	
Sud Chemie Prototech	Misc-03144	400 Cells/in ²	
Guild Associates	No-NO _x	400 Cells/in ²	
Guild Associates	3X	400 Cells/in ²	
Johnson Matthey	CatalyK6 Sample	400 Cells/in ²	

Lab-scale results

CBR Filtration Team

Technology Transfer Program (TTP)

Schematic representation of catalytic reactor

Dry NH₃ tests

Humid NH₃ tests

Selectivity (NO_x): NH₃ tests (dry)

Selectivity (NO_x): NH₃ tests (humid)

Selectivity (N₂O): NH₃ tests (dry)

Selectivity (N₂O): NH₃ tests (humid)

Dry C₃F₆ tests

Humid C₃F₆ tests

Catalyst Performance

Catalyst performance summary information

Catalyst	Design Lim.	Temperature ²	Ammonia	Ammonia
	Chemical ¹		$[NO_x]^3$	$[N_2O]^3$
Guild No-NO _x	C_3F_6	T > 500°C	> 500 ppm	> 300 ppm
Guild No-NO _x Plus 3X	C_3F_6	350°C	15 ppm	160 ppm
Guild 3X	C_3F_6	310°C	400 ppm	550 ppm
Engelhard #164217005	C_3F_6	440°C	> 1,000 ppm	~ 300 ppm
UEC NB001-73-001	C_3F_6	T > 500°C	> 1,000 ppm	~ 300 ppm
UEC NB001-73-002	C_3F_6	T > 500°C	> 1,000 ppm	~ 300 ppm
SCP LS02-03145	C_3F_6	450°C	> 1,000 ppm	~ 300 ppm
SCP MISC-03144	C_3F_6	450°C	> 1,000 ppm	~ 300 ppm
JM CatalyK6 Sample	C_3F_6	T > 500°C	> 1,000 ppm	~ 300 ppm

Chemical requiring greatest temperature to achieve 99% destruction

²Temperature required to achieve 99% destruction of design limiting chemical

³NO_x or N₂O concentration formed during destruction of NH₃ at temperature

NBC Subsystem Summary

Targeted for:

FCS Application

Scalable for building protection

Transportable shelters (JECP)

CATOX

CBR Filtration Team

Technology Transfer Program (TTP)

Ammonia (HC): Feed Temperature

Feed Conditions

CATOX

CBR Filtration Team

Technology Transfer Program (TTP)

ATD Experimental Design

- 6 x 2000 mg/m³ x 10 minutes $(C_T = 120,000 \text{ mg-min/m}^3)$
- 6 x 200 mg/m³ x 100 minutes $(C_T = 120,000 \text{ mg-min/m}^3)$

 $C_T = 240,000 \text{ mg-min/m}^3$ (under 2.5% water (volume) and 50 cfm)

Ammonia (HC): Feed Concentrations

ECBC 50 SCFM CATOX UNIT NH3-HW-BHc Ammonia Feed Chart 5-6-04

Ammonia (HC): Temperature ECBC 50 SCFM CATOX UNIT

Guild Associates, Inc.

Temperature Plot

CATOX

CBR Filtration Team

 $Technology\ Transfer\ Program\ (TTP)$

Ammonia (HC); Parent compound

ECBC 50 SCFM CATOX UNIT Analog Signal Chart

Ammonia (HC): By-products

ECBC 50 SCFM CATOX UNIT Analog Signal Chart

Ammonia (LC): Feed Temperature

ECBC 50 SCFM CATOX UNIT Feed Conditions

Ammonia (LC): Feed Concentrations Guild Associates, Inc.

ECBC 50 SCFM CATOX UNIT NH3-HW-BLc P3-5 Feed Chart 5-10-04

Ammonia (LC): Temperature Guild Associates, Inc.

ECBC 50 SCFM CATOX UNIT Temperature Plot

Ammonia (LC): Parent

NH3-HW-BLc P3-5 Effluent Chart (NH3) 5-10-04

Description Ethylene Oxide (HC): Temperature

ECBC 50 SCFM CATOX UNIT

Ethylene Oxide (HC): Feed Concentrations

ECBC 50 SCFM CATOX UNIT EO-HW-BHc 6-18-04 EO Feed - CO2 Effluent

Ethylene Oxide (HC): By-products

EOHWBH: 6-18-04 EO-COEffluent

Formalin (LC)

ECBC 50 SCFM CATOX UNIT

Formalin (LC)

ECBC 50 SCFM CATOX UNIT HCHO-HW-DLc 7-14-04 A1 - HCHO A4 - CO2

Formalin (LC)

ECBC 50 SCFM CATOX UNIT HCHO-HW-DLc 7-14-04 A3 - CO2 A4 - CO A4 - HCHO A5 - HCHO


```
Chemicals tested:
```

Carbon Monoxide

Ammonia

Ethylene Oxide

Formalin

Chemical underway:

Acetonitrile

Chemicals left:

Chloroform

CK

CS2

Nitric Acid

CEES

HF

HFP

DMMP

CBR Filtration Team

Technology Transfer Program (TTP)

In a fielded system, one catalyst bed operating at one flow rate and one operating temperature will be employed.

Power and weight optimization

Improvement of Subcomponents

Next Generation PTS

Catalyst Improvements

Heat Exchanger (greater 90% heat recovery efficiency

Modular System

Lighter, Smaller Overall Footprint

Acknowledgements

Joseph Rossin, Ph.D., Guild Associates

Russell W. Johnson, Ph.D., Honeywell, Inc.

Peter M. Michalakos, Ph.D., Honeywell, Inc.

Brian Elmiger, Honeywell, Inc.